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Synthesis of the soy isoflavone, daidzein, and its derivatives, isoformononetin and dimethyldaidzein,
through utilization of a novel synthetic pathway is reported. This synthesis employs an enamine addition
and O-methylation of 2,4-dihydroxyacetophenone, a subsequent ring closure and iodination, followed by
a Suzuki coupling with PEG 10000. Demethylation of either isoformononetin or dimethyldaidzein affor-
ded daidzein.

� 2010 Elsevier Ltd. All rights reserved.
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Figure 1. Common isoflavones found in soybeans.
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Figure 2. Structure of daidzein.
1. Introduction

Flavonoids are a class of natural products that are composed of
a three ring backbone, two of which are aryl moieties. They are a
key contributor in a series of plant defense mechanisms acting as
free-radical scavengers throughout the body.1 The flavonoids
encompass six subclasses including the flavones, flavonols, flava-
nones, isoflavones, anthocyanidins, and catechins.2 One flavonoid
subclass that has received a great deal of attention over the last
decade for potential biological and medicinal applications is the
isoflavones.

Soy isoflavones are found in the legume family of plants and
typically exist in a 7-O-glycosylated state until being metabolized
into aglycones.3 Some of the most popular isoflavones include
glycitein, genistein, formononetin, biochanin A (Fig. 1), and daidz-
ein, 1 (Fig. 2). Of these, the most extensive studies have been fo-
cused on genistein and daidzein.4

Daidzein has gained particular interest in recent years for its
biological applications. It functions much like genistein, in terms
of its strong antioxidant activity and its estrogen-like structure
allowing for altered growth, development, and function of estro-
gen-dependant target tissues,5 but in addition, daidzein also has
its own unique capabilities. It has been shown to elevate the activ-
ity of catalase, superoxide dismutase, glutathione peroxidase, and
glutathione reductase in the skin and small intestine,5 and inhibit
osteoporosis in ovariectomized mice.6 In addition, at low concen-
trations daidzein has demonstrated its ability to stimulate cate-
cholamine synthesis through estrogen receptors,7 and inhibit
CYP1A1 in mouse hepatoma cell cultures showing a reduction in
carcinogenesis.8 Finally, it has been shown to be a potential
treatment for neurodegeneration,9 and has been proven to be more
efficient than genistein in preventing ovariectomy-induced osteo-
porosis in rats.10
ll rights reserved.
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Multiple syntheses have been carried out to produce daidzein. It
has been recently prepared by initially producing 4-benzyloxysal-
icylaldehyde from resorcinol. A Wittig reaction, O-alkylation, an
additional Wittig, RCM with Grubb’s catalyst, subsequent hydrob-
oration–oxidation to create the chromen ring, treatment with DDQ
in an oxidation–dehydration reaction, and finally debenzylation
and demethylation with AlCl3/EtSH gave daidzein.11 Other proce-
dures have also been employed including utilization of resorcinol,
4-hydroxyphenylacetic acid, and BF3-Et2O to form a phenyl–benzyl
ketone and subsequently to form daidzein in a reaction with Me-
SO2Cl, BF3-Et2O, and DMF.12 It has also been demonstrated that
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Scheme 1. Synthetic path to the isoflavones, isoformononetin, dimethyldaidzein, and daidzein. Reagents and conditions: (i) DMF-DMA, DMF, 80 �C, 24 h; (ii) I2, MeOH, rt,
24 h; (iiia) 4-OH-PBA, Na2CO3, Pd(OAc)2, PEG 10000, 50 �C, MeOH, 3 h; (iiib) 4-OMe-PBA, Na2CO3, Pd(OAc)2, PEG 10000, 50 �C, MeOH, 3 h; (iv) HI, reflux, 4 h.
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by using benzyl-protected acetophenones and running aldol con-
densation with 4-methoxybenzaldehyde, treatment with thallium
nitrate for oxidative rearrangement, followed by addition of hydro-
chloric acid affords daidzein.13

Herein, we report an efficient, novel synthetic pathway to yield
daidzein, as well as its derivatives, isoformononetin and dimeth-
yldaidzein. This was accomplished through the utilization of an en-
amine addition and O-methylation, a ring closure and iodination, a
Suzuki coupling with PEG 10000, and O-demethylation to afford
our desired product, daidzein.

It has been demonstrated by Stevens and co-workers that N,N-
dimethylformamide dimethylacetal (DMF-DMA) can be used with
acetophenone derivatives to yield enamino-ketones.14 Our synthe-
sis (Scheme 1) began with commercially available 2,4-dihydroxy-
acetophenone (2) and DMF-DMA. Our original intention was
strictly to add the enamine moiety to the starting acetophenone,
but upon stirring at 80 �C in DMF for 24 h, we found that it went
through an additional O-methylation on the 4-OH group, resulting
in 3-dimethylamino-1-(2-hydroxy-4-methoxy)-phenylpropenone
(3) in a respectable yield of 89%.15 It has also been demonstrated
that DMF-DMA is capable of O-methylation of phenols.16 We made
multiple attempts to isolate the non-O-methylated enamine prod-
uct by performing the reaction with 1:1, 1:2, and 1:3 ratios of
2:DMF-DMA as well as at various temperatures. Only the 1:2 ratio
at 80 �C was determined mildly successful but still afforded >60%
of 3. Attempted isolation of the desired non-O-methylated product
was very difficult due to its insolubility in ethyl acetate, chloro-
form, dichloromethane, and hexanes. The compound was finally
determined to be soluble in acetonitrile and attempted recrystalli-
zation yielded very little product. As a result, we continued the
synthesis conscious of the final O-demethylation step.

As did Stevens et al.,14 our synthesis continued with a ring clo-
sure and iodination of our enamine added product, 3. Methylation
of the 4-OH group in the first step did not hinder a successful ring
closure and iodination of our enamine added product, 7-methoxy-
3-iodo-4H-chromen-4-one (4) in an 81% yield.17 This was followed
by a Suzuki coupling to afford daidzein derivatives, isoformonone-
tin (5a) or dimethyldaidzein (5b) when using the respective phen-
ylboronic acid (PBA) derivatives.14 A typical Suzuki coupling
involves the use of a phosphine-based ligand which can be toxic,
expensive, and difficult to separate from the reaction mixture.18

Liu et al. have recently demonstrated a green approach to this reac-
tion. The use of poly(ethylene glycol) 4000 (PEG 4000) as the li-
gand, along with Pd(OAc)2, Na2CO3, in H2O or MeOH effectively
gave the desired Suzuki products.19 In lieu of PEG 4000, we em-
ployed PEG 10000,20 which did indeed afford isoformononetin
(7-methoxy-3-(4-hydroxyphenyl)-4H-chromen-4-one) (5a, 98%)
and dimethyldaidzein (7-methoxy-3-(4-methoxyphenyl)-4H-chro-
men-4-one) (5b, 90%).21 The PEG/Pd(OAc)2 could also be reused
without the further addition of palladium.

Our final step required the demethylation of 5a and 5b to yield
our desired product, daidzein, 1. A series of demethylation tech-
niques utilizing BBr3, BCl3,22 AlCl3,23 and trimethylsilyl iodide
(TMSI)24 were initially attempted on both derivatives. The only
method that was mildly effective was the use of TMSI because of
its ability to demethylate the 40-OMe on the dimethyldaidzein
derivative after one week at reflux in chloroform solvent. The
method that proved effective for both derivatives involved dissolv-
ing the respective daidzein derivative in HI and maintaining it at
reflux for 4 h.25 Once the product was collected and subjected to
silica gel chromatography, we obtained our desired product, daidz-
ein, in high yields (isoformononetin—89%, dimethyldaidzein—
94%).26

In conclusion, a novel pathway has been demonstrated for the
synthesis of daidzein, through either isoformononetin or dimeth-
yldaidzein in four steps, with an overall yield of 62% and 61%,
respectively.
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